\(\int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx\) [1089]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 142 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=\frac {4 a^3 x}{(c-i d)^2}+\frac {i a^3 \log (\cos (e+f x))}{d^2 f}-\frac {a^3 (i c-d) (c-3 i d) \log (c \cos (e+f x)+d \sin (e+f x))}{(c-i d)^2 d^2 f}+\frac {(c+i d) \left (a^3+i a^3 \tan (e+f x)\right )}{(c-i d) d f (c+d \tan (e+f x))} \]

[Out]

4*a^3*x/(c-I*d)^2+I*a^3*ln(cos(f*x+e))/d^2/f-a^3*(I*c-d)*(c-3*I*d)*ln(c*cos(f*x+e)+d*sin(f*x+e))/(c-I*d)^2/d^2
/f+(c+I*d)*(a^3+I*a^3*tan(f*x+e))/(c-I*d)/d/f/(c+d*tan(f*x+e))

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3634, 3670, 3556, 3612, 3611} \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=-\frac {a^3 (-d+i c) (c-3 i d) \log (c \cos (e+f x)+d \sin (e+f x))}{d^2 f (c-i d)^2}+\frac {(c+i d) \left (a^3+i a^3 \tan (e+f x)\right )}{d f (c-i d) (c+d \tan (e+f x))}+\frac {4 a^3 x}{(c-i d)^2}+\frac {i a^3 \log (\cos (e+f x))}{d^2 f} \]

[In]

Int[(a + I*a*Tan[e + f*x])^3/(c + d*Tan[e + f*x])^2,x]

[Out]

(4*a^3*x)/(c - I*d)^2 + (I*a^3*Log[Cos[e + f*x]])/(d^2*f) - (a^3*(I*c - d)*(c - (3*I)*d)*Log[c*Cos[e + f*x] +
d*Sin[e + f*x]])/((c - I*d)^2*d^2*f) + ((c + I*d)*(a^3 + I*a^3*Tan[e + f*x]))/((c - I*d)*d*f*(c + d*Tan[e + f*
x]))

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3611

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c/(b*f))
*Log[RemoveContent[a*Cos[e + f*x] + b*Sin[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]

Rule 3612

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c +
b*d)*(x/(a^2 + b^2)), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3634

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
 + Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(
m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && Lt
Q[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3670

Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]))/((a_.) + (b_.)*tan[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Dist[B*(d/b), Int[Tan[e + f*x], x], x] + Dist[1/b, Int[Simp[A*b*c + (A*b*d + B*(
b*c - a*d))*Tan[e + f*x], x]/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(c+i d) \left (a^3+i a^3 \tan (e+f x)\right )}{(c-i d) d f (c+d \tan (e+f x))}-\frac {\int \frac {(a+i a \tan (e+f x)) \left (-a^2 (c+3 i d)+a^2 (i c+d) \tan (e+f x)\right )}{c+d \tan (e+f x)} \, dx}{d (i c+d)} \\ & = \frac {(c+i d) \left (a^3+i a^3 \tan (e+f x)\right )}{(c-i d) d f (c+d \tan (e+f x))}-\frac {\left (i a^3\right ) \int \tan (e+f x) \, dx}{d^2}-\frac {\int \frac {-a^3 (c+3 i d) d+a^3 \left (c^2-i c d+4 d^2\right ) \tan (e+f x)}{c+d \tan (e+f x)} \, dx}{d^2 (i c+d)} \\ & = -\frac {4 a^3 x}{(i c+d)^2}+\frac {i a^3 \log (\cos (e+f x))}{d^2 f}+\frac {(c+i d) \left (a^3+i a^3 \tan (e+f x)\right )}{(c-i d) d f (c+d \tan (e+f x))}+\frac {\left (a^3 (c+i d) (c-3 i d)\right ) \int \frac {d-c \tan (e+f x)}{c+d \tan (e+f x)} \, dx}{(c-i d) d^2 (i c+d)} \\ & = -\frac {4 a^3 x}{(i c+d)^2}+\frac {i a^3 \log (\cos (e+f x))}{d^2 f}-\frac {a^3 (i c-d) (c-3 i d) \log (c \cos (e+f x)+d \sin (e+f x))}{(c-i d)^2 d^2 f}+\frac {(c+i d) \left (a^3+i a^3 \tan (e+f x)\right )}{(c-i d) d f (c+d \tan (e+f x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.88 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.33 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=\frac {i a^3 \left (-c d^2+2 i d^3-8 c d^2 \log (i+\tan (e+f x))+2 c^3 \log (c+d \tan (e+f x))-4 i c^2 d \log (c+d \tan (e+f x))+6 c d^2 \log (c+d \tan (e+f x))-d \left (2 c^2+2 i c d+3 d^2+8 d^2 \log (i+\tan (e+f x))-2 \left (c^2-2 i c d+3 d^2\right ) \log (c+d \tan (e+f x))\right ) \tan (e+f x)\right )}{2 d^2 (i c+d)^2 f (c+d \tan (e+f x))} \]

[In]

Integrate[(a + I*a*Tan[e + f*x])^3/(c + d*Tan[e + f*x])^2,x]

[Out]

((I/2)*a^3*(-(c*d^2) + (2*I)*d^3 - 8*c*d^2*Log[I + Tan[e + f*x]] + 2*c^3*Log[c + d*Tan[e + f*x]] - (4*I)*c^2*d
*Log[c + d*Tan[e + f*x]] + 6*c*d^2*Log[c + d*Tan[e + f*x]] - d*(2*c^2 + (2*I)*c*d + 3*d^2 + 8*d^2*Log[I + Tan[
e + f*x]] - 2*(c^2 - (2*I)*c*d + 3*d^2)*Log[c + d*Tan[e + f*x]])*Tan[e + f*x]))/(d^2*(I*c + d)^2*f*(c + d*Tan[
e + f*x]))

Maple [A] (verified)

Time = 0.41 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.23

method result size
derivativedivides \(\frac {a^{3} \left (-\frac {i c^{3}-3 i c \,d^{2}-3 c^{2} d +d^{3}}{d^{2} \left (c^{2}+d^{2}\right ) \left (c +d \tan \left (f x +e \right )\right )}+\frac {\left (-i c^{4}-6 i c^{2} d^{2}+3 i d^{4}+8 c \,d^{3}\right ) \ln \left (c +d \tan \left (f x +e \right )\right )}{\left (c^{2}+d^{2}\right )^{2} d^{2}}+\frac {\frac {\left (4 i c^{2}-4 i d^{2}-8 c d \right ) \ln \left (1+\tan ^{2}\left (f x +e \right )\right )}{2}+\left (8 i c d +4 c^{2}-4 d^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )}{\left (c^{2}+d^{2}\right )^{2}}\right )}{f}\) \(175\)
default \(\frac {a^{3} \left (-\frac {i c^{3}-3 i c \,d^{2}-3 c^{2} d +d^{3}}{d^{2} \left (c^{2}+d^{2}\right ) \left (c +d \tan \left (f x +e \right )\right )}+\frac {\left (-i c^{4}-6 i c^{2} d^{2}+3 i d^{4}+8 c \,d^{3}\right ) \ln \left (c +d \tan \left (f x +e \right )\right )}{\left (c^{2}+d^{2}\right )^{2} d^{2}}+\frac {\frac {\left (4 i c^{2}-4 i d^{2}-8 c d \right ) \ln \left (1+\tan ^{2}\left (f x +e \right )\right )}{2}+\left (8 i c d +4 c^{2}-4 d^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )}{\left (c^{2}+d^{2}\right )^{2}}\right )}{f}\) \(175\)
norman \(\frac {\frac {i \left (2 i a^{3} c d +a^{3} c^{2}-a^{3} d^{2}\right ) \tan \left (f x +e \right )}{c f \left (-i d +c \right ) d}+\frac {4 a^{3} c x}{-2 i c d +c^{2}-d^{2}}-\frac {4 d \,a^{3} x \tan \left (f x +e \right )}{2 i c d -c^{2}+d^{2}}}{c +d \tan \left (f x +e \right )}+\frac {2 i a^{3} \ln \left (1+\tan ^{2}\left (f x +e \right )\right )}{f \left (-2 i c d +c^{2}-d^{2}\right )}-\frac {i a^{3} \left (-2 i c d +c^{2}+3 d^{2}\right ) \ln \left (c +d \tan \left (f x +e \right )\right )}{d^{2} f \left (-2 i c d +c^{2}-d^{2}\right )}\) \(207\)
parallelrisch \(\frac {2 a^{3} c^{2} d^{3}+3 a^{3} c^{4} d +3 i \ln \left (c +d \tan \left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} d^{5}-6 i \ln \left (c +d \tan \left (f x +e \right )\right ) a^{3} c^{3} d^{2}+3 i \ln \left (c +d \tan \left (f x +e \right )\right ) a^{3} c \,d^{4}-i \ln \left (c +d \tan \left (f x +e \right )\right ) a^{3} c^{5}+2 i a^{3} c^{3} d^{2}+3 i a^{3} c \,d^{4}-4 \ln \left (1+\tan ^{2}\left (f x +e \right )\right ) a^{3} c^{2} d^{3}-i a^{3} c^{5}+2 i \ln \left (1+\tan ^{2}\left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} c^{2} d^{3}+8 \ln \left (c +d \tan \left (f x +e \right )\right ) a^{3} c^{2} d^{3}-4 x \tan \left (f x +e \right ) a^{3} d^{5} f +4 x \,a^{3} c^{3} d^{2} f -4 x \,a^{3} c \,d^{4} f +8 \ln \left (c +d \tan \left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} c \,d^{4}-a^{3} d^{5}-2 i \ln \left (1+\tan ^{2}\left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} d^{5}+2 i \ln \left (1+\tan ^{2}\left (f x +e \right )\right ) a^{3} c^{3} d^{2}-2 i \ln \left (1+\tan ^{2}\left (f x +e \right )\right ) a^{3} c \,d^{4}-4 \ln \left (1+\tan ^{2}\left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} c \,d^{4}-i \ln \left (c +d \tan \left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} c^{4} d -6 i \ln \left (c +d \tan \left (f x +e \right )\right ) \tan \left (f x +e \right ) a^{3} c^{2} d^{3}+8 i x \,a^{3} c^{2} d^{3} f +4 x \tan \left (f x +e \right ) a^{3} c^{2} d^{3} f +8 i x \tan \left (f x +e \right ) a^{3} c \,d^{4} f}{f \left (c^{2}+d^{2}\right )^{2} d^{2} \left (c +d \tan \left (f x +e \right )\right )}\) \(521\)
risch \(-\frac {8 a^{3} x}{2 i c d -c^{2}+d^{2}}-\frac {4 a^{3} c x}{d \left (i c^{2}-i d^{2}+2 c d \right )}-\frac {4 a^{3} c e}{d f \left (i c^{2}-i d^{2}+2 c d \right )}+\frac {i a^{3} \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}{d^{2} f}-\frac {6 i a^{3} e}{f \left (i c^{2}-i d^{2}+2 c d \right )}-\frac {4 i a^{3} c}{f \left (-i d +c \right )^{2} \left (-i {\mathrm e}^{2 i \left (f x +e \right )} d +{\mathrm e}^{2 i \left (f x +e \right )} c +i d +c \right )}-\frac {2 i a^{3} \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {i d +c}{i d -c}\right ) c}{d f \left (i c^{2}-i d^{2}+2 c d \right )}+\frac {2 a^{3} x}{d^{2}}+\frac {2 a^{3} e}{d^{2} f}-\frac {6 i a^{3} x}{i c^{2}-i d^{2}+2 c d}-\frac {2 a^{3} c^{2}}{f d \left (-i d +c \right )^{2} \left (-i {\mathrm e}^{2 i \left (f x +e \right )} d +{\mathrm e}^{2 i \left (f x +e \right )} c +i d +c \right )}+\frac {2 a^{3} d}{f \left (-i d +c \right )^{2} \left (-i {\mathrm e}^{2 i \left (f x +e \right )} d +{\mathrm e}^{2 i \left (f x +e \right )} c +i d +c \right )}-\frac {2 i a^{3} c^{2} x}{d^{2} \left (i c^{2}-i d^{2}+2 c d \right )}+\frac {a^{3} \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {i d +c}{i d -c}\right ) c^{2}}{d^{2} f \left (i c^{2}-i d^{2}+2 c d \right )}+\frac {3 a^{3} \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {i d +c}{i d -c}\right )}{f \left (i c^{2}-i d^{2}+2 c d \right )}-\frac {2 i a^{3} c^{2} e}{d^{2} f \left (i c^{2}-i d^{2}+2 c d \right )}\) \(583\)

[In]

int((a+I*a*tan(f*x+e))^3/(c+d*tan(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

1/f*a^3*(-1/d^2*(I*c^3-3*I*c*d^2-3*c^2*d+d^3)/(c^2+d^2)/(c+d*tan(f*x+e))+1/(c^2+d^2)^2*(-I*c^4-6*I*c^2*d^2+3*I
*d^4+8*c*d^3)/d^2*ln(c+d*tan(f*x+e))+1/(c^2+d^2)^2*(1/2*(4*I*c^2-4*I*d^2-8*c*d)*ln(1+tan(f*x+e)^2)+(8*I*c*d+4*
c^2-4*d^2)*arctan(tan(f*x+e))))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 298 vs. \(2 (126) = 252\).

Time = 0.27 (sec) , antiderivative size = 298, normalized size of antiderivative = 2.10 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=\frac {2 i \, a^{3} c^{2} d - 4 \, a^{3} c d^{2} - 2 i \, a^{3} d^{3} - {\left (a^{3} c^{3} - i \, a^{3} c^{2} d + 5 \, a^{3} c d^{2} + 3 i \, a^{3} d^{3} + {\left (a^{3} c^{3} - 3 i \, a^{3} c^{2} d + a^{3} c d^{2} - 3 i \, a^{3} d^{3}\right )} e^{\left (2 i \, f x + 2 i \, e\right )}\right )} \log \left (\frac {{\left (i \, c + d\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + i \, c - d}{i \, c + d}\right ) + {\left (a^{3} c^{3} - i \, a^{3} c^{2} d + a^{3} c d^{2} - i \, a^{3} d^{3} + {\left (a^{3} c^{3} - 3 i \, a^{3} c^{2} d - 3 \, a^{3} c d^{2} + i \, a^{3} d^{3}\right )} e^{\left (2 i \, f x + 2 i \, e\right )}\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}{{\left (-i \, c^{3} d^{2} - 3 \, c^{2} d^{3} + 3 i \, c d^{4} + d^{5}\right )} f e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-i \, c^{3} d^{2} - c^{2} d^{3} - i \, c d^{4} - d^{5}\right )} f} \]

[In]

integrate((a+I*a*tan(f*x+e))^3/(c+d*tan(f*x+e))^2,x, algorithm="fricas")

[Out]

(2*I*a^3*c^2*d - 4*a^3*c*d^2 - 2*I*a^3*d^3 - (a^3*c^3 - I*a^3*c^2*d + 5*a^3*c*d^2 + 3*I*a^3*d^3 + (a^3*c^3 - 3
*I*a^3*c^2*d + a^3*c*d^2 - 3*I*a^3*d^3)*e^(2*I*f*x + 2*I*e))*log(((I*c + d)*e^(2*I*f*x + 2*I*e) + I*c - d)/(I*
c + d)) + (a^3*c^3 - I*a^3*c^2*d + a^3*c*d^2 - I*a^3*d^3 + (a^3*c^3 - 3*I*a^3*c^2*d - 3*a^3*c*d^2 + I*a^3*d^3)
*e^(2*I*f*x + 2*I*e))*log(e^(2*I*f*x + 2*I*e) + 1))/((-I*c^3*d^2 - 3*c^2*d^3 + 3*I*c*d^4 + d^5)*f*e^(2*I*f*x +
 2*I*e) + (-I*c^3*d^2 - c^2*d^3 - I*c*d^4 - d^5)*f)

Sympy [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 374 vs. \(2 (116) = 232\).

Time = 14.03 (sec) , antiderivative size = 374, normalized size of antiderivative = 2.63 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=- \frac {i a^{3} \left (c - 3 i d\right ) \left (c + i d\right ) \log {\left (e^{2 i f x} + \frac {a^{3} c^{2} + \frac {i a^{3} c d \left (c - 3 i d\right ) \left (c + i d\right )}{\left (c - i d\right )^{2}} - i a^{3} c d + \frac {a^{3} d^{2} \left (c - 3 i d\right ) \left (c + i d\right )}{\left (c - i d\right )^{2}} + 2 a^{3} d^{2}}{a^{3} c^{2} e^{2 i e} - 2 i a^{3} c d e^{2 i e} + a^{3} d^{2} e^{2 i e}} \right )}}{d^{2} f \left (c - i d\right )^{2}} + \frac {i a^{3} \log {\left (\frac {a^{3} c^{2} - 2 i a^{3} c d + a^{3} d^{2}}{a^{3} c^{2} e^{2 i e} - 2 i a^{3} c d e^{2 i e} + a^{3} d^{2} e^{2 i e}} + e^{2 i f x} \right )}}{d^{2} f} + \frac {- 2 a^{3} c^{2} - 4 i a^{3} c d + 2 a^{3} d^{2}}{c^{3} d f - i c^{2} d^{2} f + c d^{3} f - i d^{4} f + \left (c^{3} d f e^{2 i e} - 3 i c^{2} d^{2} f e^{2 i e} - 3 c d^{3} f e^{2 i e} + i d^{4} f e^{2 i e}\right ) e^{2 i f x}} \]

[In]

integrate((a+I*a*tan(f*x+e))**3/(c+d*tan(f*x+e))**2,x)

[Out]

-I*a**3*(c - 3*I*d)*(c + I*d)*log(exp(2*I*f*x) + (a**3*c**2 + I*a**3*c*d*(c - 3*I*d)*(c + I*d)/(c - I*d)**2 -
I*a**3*c*d + a**3*d**2*(c - 3*I*d)*(c + I*d)/(c - I*d)**2 + 2*a**3*d**2)/(a**3*c**2*exp(2*I*e) - 2*I*a**3*c*d*
exp(2*I*e) + a**3*d**2*exp(2*I*e)))/(d**2*f*(c - I*d)**2) + I*a**3*log((a**3*c**2 - 2*I*a**3*c*d + a**3*d**2)/
(a**3*c**2*exp(2*I*e) - 2*I*a**3*c*d*exp(2*I*e) + a**3*d**2*exp(2*I*e)) + exp(2*I*f*x))/(d**2*f) + (-2*a**3*c*
*2 - 4*I*a**3*c*d + 2*a**3*d**2)/(c**3*d*f - I*c**2*d**2*f + c*d**3*f - I*d**4*f + (c**3*d*f*exp(2*I*e) - 3*I*
c**2*d**2*f*exp(2*I*e) - 3*c*d**3*f*exp(2*I*e) + I*d**4*f*exp(2*I*e))*exp(2*I*f*x))

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.73 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=\frac {\frac {4 \, {\left (a^{3} c^{2} + 2 i \, a^{3} c d - a^{3} d^{2}\right )} {\left (f x + e\right )}}{c^{4} + 2 \, c^{2} d^{2} + d^{4}} + \frac {{\left (-i \, a^{3} c^{4} - 6 i \, a^{3} c^{2} d^{2} + 8 \, a^{3} c d^{3} + 3 i \, a^{3} d^{4}\right )} \log \left (d \tan \left (f x + e\right ) + c\right )}{c^{4} d^{2} + 2 \, c^{2} d^{4} + d^{6}} - \frac {2 \, {\left (-i \, a^{3} c^{2} + 2 \, a^{3} c d + i \, a^{3} d^{2}\right )} \log \left (\tan \left (f x + e\right )^{2} + 1\right )}{c^{4} + 2 \, c^{2} d^{2} + d^{4}} + \frac {-i \, a^{3} c^{3} + 3 \, a^{3} c^{2} d + 3 i \, a^{3} c d^{2} - a^{3} d^{3}}{c^{3} d^{2} + c d^{4} + {\left (c^{2} d^{3} + d^{5}\right )} \tan \left (f x + e\right )}}{f} \]

[In]

integrate((a+I*a*tan(f*x+e))^3/(c+d*tan(f*x+e))^2,x, algorithm="maxima")

[Out]

(4*(a^3*c^2 + 2*I*a^3*c*d - a^3*d^2)*(f*x + e)/(c^4 + 2*c^2*d^2 + d^4) + (-I*a^3*c^4 - 6*I*a^3*c^2*d^2 + 8*a^3
*c*d^3 + 3*I*a^3*d^4)*log(d*tan(f*x + e) + c)/(c^4*d^2 + 2*c^2*d^4 + d^6) - 2*(-I*a^3*c^2 + 2*a^3*c*d + I*a^3*
d^2)*log(tan(f*x + e)^2 + 1)/(c^4 + 2*c^2*d^2 + d^4) + (-I*a^3*c^3 + 3*a^3*c^2*d + 3*I*a^3*c*d^2 - a^3*d^3)/(c
^3*d^2 + c*d^4 + (c^2*d^3 + d^5)*tan(f*x + e)))/f

Giac [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 375 vs. \(2 (126) = 252\).

Time = 0.57 (sec) , antiderivative size = 375, normalized size of antiderivative = 2.64 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=\frac {\frac {8 \, a^{3} \log \left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + i\right )}{-i \, c^{2} - 2 \, c d + i \, d^{2}} + \frac {i \, a^{3} \log \left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{d^{2}} + \frac {i \, a^{3} \log \left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}{d^{2}} + \frac {{\left (-i \, a^{3} c^{2} - 2 \, a^{3} c d - 3 i \, a^{3} d^{2}\right )} \log \left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - c\right )}{c^{2} d^{2} - 2 i \, c d^{3} - d^{4}} - \frac {-i \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, a^{3} c^{3} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 3 i \, a^{3} c^{2} d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 4 i \, a^{3} c^{3} d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 2 \, a^{3} c^{2} d^{2} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 8 i \, a^{3} c d^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 2 \, a^{3} d^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + i \, a^{3} c^{4} + 2 \, a^{3} c^{3} d + 3 i \, a^{3} c^{2} d^{2}}{{\left (c^{3} d^{2} - 2 i \, c^{2} d^{3} - c d^{4}\right )} {\left (c \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 2 \, d \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - c\right )}}}{f} \]

[In]

integrate((a+I*a*tan(f*x+e))^3/(c+d*tan(f*x+e))^2,x, algorithm="giac")

[Out]

(8*a^3*log(tan(1/2*f*x + 1/2*e) + I)/(-I*c^2 - 2*c*d + I*d^2) + I*a^3*log(tan(1/2*f*x + 1/2*e) + 1)/d^2 + I*a^
3*log(tan(1/2*f*x + 1/2*e) - 1)/d^2 + (-I*a^3*c^2 - 2*a^3*c*d - 3*I*a^3*d^2)*log(c*tan(1/2*f*x + 1/2*e)^2 - 2*
d*tan(1/2*f*x + 1/2*e) - c)/(c^2*d^2 - 2*I*c*d^3 - d^4) - (-I*a^3*c^4*tan(1/2*f*x + 1/2*e)^2 - 2*a^3*c^3*d*tan
(1/2*f*x + 1/2*e)^2 - 3*I*a^3*c^2*d^2*tan(1/2*f*x + 1/2*e)^2 + 4*I*a^3*c^3*d*tan(1/2*f*x + 1/2*e) + 2*a^3*c^2*
d^2*tan(1/2*f*x + 1/2*e) + 8*I*a^3*c*d^3*tan(1/2*f*x + 1/2*e) - 2*a^3*d^4*tan(1/2*f*x + 1/2*e) + I*a^3*c^4 + 2
*a^3*c^3*d + 3*I*a^3*c^2*d^2)/((c^3*d^2 - 2*I*c^2*d^3 - c*d^4)*(c*tan(1/2*f*x + 1/2*e)^2 - 2*d*tan(1/2*f*x + 1
/2*e) - c)))/f

Mupad [B] (verification not implemented)

Time = 8.33 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.94 \[ \int \frac {(a+i a \tan (e+f x))^3}{(c+d \tan (e+f x))^2} \, dx=-\frac {4\,a^3\,\ln \left (\mathrm {tan}\left (e+f\,x\right )+1{}\mathrm {i}\right )}{f\,\left (c^2\,1{}\mathrm {i}+2\,c\,d-d^2\,1{}\mathrm {i}\right )}+\frac {a^3\,\left (-c^2\,1{}\mathrm {i}+2\,c\,d+d^2\,1{}\mathrm {i}\right )}{d^3\,f\,\left (\mathrm {tan}\left (e+f\,x\right )+\frac {c}{d}\right )\,\left (c-d\,1{}\mathrm {i}\right )}+\frac {a^3\,\ln \left (c+d\,\mathrm {tan}\left (e+f\,x\right )\right )\,\left (c^2\,1{}\mathrm {i}+2\,c\,d+d^2\,3{}\mathrm {i}\right )}{d^2\,f\,{\left (d+c\,1{}\mathrm {i}\right )}^2} \]

[In]

int((a + a*tan(e + f*x)*1i)^3/(c + d*tan(e + f*x))^2,x)

[Out]

(a^3*(2*c*d - c^2*1i + d^2*1i))/(d^3*f*(tan(e + f*x) + c/d)*(c - d*1i)) - (4*a^3*log(tan(e + f*x) + 1i))/(f*(2
*c*d + c^2*1i - d^2*1i)) + (a^3*log(c + d*tan(e + f*x))*(2*c*d + c^2*1i + d^2*3i))/(d^2*f*(c*1i + d)^2)